Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands
نویسندگان
چکیده
Gaining a better understanding of carbon (C) dynamics across the terrestrial and aquatic landscapes has become a major research initiative in ecosystem ecology. Wetlands store a large portion of the global soil C, but are also highly dynamic ecosystems in terms of hydrology and N cycling, and are one of the most invaded habitats worldwide. The interactions between these factors are likely to determine wetland C cycling, and specifically C accretion rates. We investigated these interactions using MONDRIAN, an individualbased model simulating plant growth and competition and linking these processes to N and C cycling. We simulated the effects of different levels of (1) N loading, (2) hydroperiod, and (3) plant community (natives only vs. invasion scenarios) and their interactions on C accretion outcomes in freshwater coastal wetlands of the Great Lakes region of North America. Results showed that N loading contributed to substantial rates of C accretion by increasing NPP (net primary productivity). By mediating anaerobic conditions and slowing decomposition, hydroperiod also exerted considerable control on C accretion. Invasion success occurred with higher N loading and contributed to higher NPP, while also interacting with hydroperiod via ecosysteminternal N cycling. Invasion success by both Typha × glauca and Phragmites australis showed a strong nonlinear relationship with N loading in which an invasion threshold occurred at moderate N inputs. This threshold was in turn influenced by duration of flooding, which reduced invasion success for P. australis but not for T. × glauca. The greatest simulated C accretion rates occurred in wetlands invaded by P. australis at the highest N loading in constant anaerobic conditions. These model results suggest that while plant invasion may increase C storage in freshwater coastal wetlands, increased plant productivity (both native and invasive) due to increased N loading is the main driver of increased
منابع مشابه
E¡ects ofan invasive cattail species (Typha glauca )on sedimentnitrogenandmicrobial communitycomposition ina freshwaterwetland
Sediments from Cheboygan Marsh, a coastal freshwater wetland on Lake Huron that has been invaded by an emergent exotic plant, Typha glauca, were examined to assess the effects of invasion on wetland nutrient levels and sediment microbial communities. Comparison of invaded and uninvaded zones of the marsh indicated that the invaded zone showed significantly lower plant diversity, as well as sign...
متن کاملPhosphorus limitation of coastal ecosystem processes.
Primary production in coastal wetlands is conventionally thought to be limited by nitrogen. Although the plant community in a pristine salt marsh was found to be limited primarily by nitrogen availability, the bacterial community in the soil was limited by phosphorus. Hence, in coastal wetlands, and possibly in many ecosystems, individual trophic groups may respond differently to nitrogen and p...
متن کاملDo seed banks confer resilience to coastal wetlands invaded by Typha glauca?
Historically, seed banks conferred resilience to Laurentian Great Lakes coastal wetlands by providing propagules of many species to replace invasive plants, such as Typha glauca Godr. After flooding, the seed bank could allow recovery of wetland composition and structure as the water levels fall. Using the seedling emergence method to estimate seed density, species and guild richness, and flori...
متن کاملGrass invasion effects on forest soil carbon depend on landscape-level land use patterns.
Plant invasions can alter the quality and quantity of detrital and root-derived inputs entering a system, thereby influencing the activities of microbial decomposers and affecting the soil carbon cycle. The effect of these inputs on soil carbon storage is often conflicting, suggesting strong context dependency in the plant-decomposer relationship. Whether there is a generalizable pattern that e...
متن کاملCo-Regulations of Spartina alterniflora Invasion and Exogenous Nitrogen Loading on Soil N2O Efflux in Subtropical Mangrove Mesocosms
Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017